Your browser doesn't support javascript.
loading
Machine learning for hand pose classification from phasic and tonic EMG signals during bimanual activities in virtual reality.
Simar, Cédric; Colot, Martin; Cebolla, Ana-Maria; Petieau, Mathieu; Cheron, Guy; Bontempi, Gianluca.
Afiliación
  • Simar C; Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium.
  • Colot M; Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium.
  • Cebolla AM; Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.
  • Petieau M; Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.
  • Cheron G; Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.
  • Bontempi G; Laboratory of Electrophysiology, Université de Mons-Hainaut, Mons, Belgium.
Front Neurosci ; 18: 1329411, 2024.
Article en En | MEDLINE | ID: mdl-38737097
ABSTRACT
Myoelectric prostheses have recently shown significant promise for restoring hand function in individuals with upper limb loss or deficiencies, driven by advances in machine learning and increasingly accessible bioelectrical signal acquisition devices. Here, we first introduce and validate a novel experimental paradigm using a virtual reality headset equipped with hand-tracking capabilities to facilitate the recordings of synchronized EMG signals and hand pose estimation. Using both the phasic and tonic EMG components of data acquired through the proposed paradigm, we compare hand gesture classification pipelines based on standard signal processing features, convolutional neural networks, and covariance matrices with Riemannian geometry computed from raw or xDAWN-filtered EMG signals. We demonstrate the performance of the latter for gesture classification using EMG signals. We further hypothesize that introducing physiological knowledge in machine learning models will enhance their performances, leading to better myoelectric prosthesis control. We demonstrate the potential of this approach by using the neurophysiological integration of the "move command" to better separate the phasic and tonic components of the EMG signals, significantly improving the performance of sustained posture recognition. These results pave the way for the development of new cutting-edge machine learning techniques, likely refined by neurophysiology, that will further improve the decoding of real-time natural gestures and, ultimately, the control of myoelectric prostheses.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Suiza