Your browser doesn't support javascript.
loading
Enhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures.
Alonso-Fernández, Iván; Haugen, Håvard Jostein; Nogueira, Liebert Parreiras; López-Álvarez, Miriam; González, Pío; López-Peña, Mónica; González-Cantalapiedra, Antonio; Muñoz-Guzón, Fernando.
Afiliación
  • Alonso-Fernández I; Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
  • Haugen HJ; Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway.
  • Nogueira LP; Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway.
  • López-Álvarez M; Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Universidade de Vigo, Grupo de Novos Materiais, 36310 Vigo, Spain.
  • González P; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain.
  • López-Peña M; Centro de Investigación en Tecnologías, Energía y Procesos Industriales (CINTECX), Universidade de Vigo, Grupo de Novos Materiais, 36310 Vigo, Spain.
  • González-Cantalapiedra A; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain.
  • Muñoz-Guzón F; Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
Polymers (Basel) ; 16(9)2024 Apr 29.
Article en En | MEDLINE | ID: mdl-38732711
ABSTRACT
This study investigates the effect of scaffold architecture on bone regeneration, focusing on 3D-printed polylactic acid-bioceramic calcium phosphate (PLA-bioCaP) composite scaffolds in rabbit femoral condyle critical defects. We explored two distinct scaffold designs to assess their influence on bone healing and scaffold performance. Structures with alternate (0°/90°) and helical (0°/45°/90°/135°/180°) laydown patterns were manufactured with a 3D printer using a fused deposition modeling technique. The scaffolds were meticulously characterized for pore size, strut thickness, porosity, pore accessibility, and mechanical properties. The in vivo efficacy of these scaffolds was evaluated using a femoral condyle critical defect model in eight skeletally mature New Zealand White rabbits. Then, the results were analyzed micro-tomographically, histologically, and histomorphometrically. Our findings indicate that both scaffold architectures are biocompatible and support bone formation. The helical scaffolds, characterized by larger pore sizes and higher porosity, demonstrated significantly greater bone regeneration than the alternate structures. However, their lower mechanical strength presented limitations for use in load-bearing sites.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza