Your browser doesn't support javascript.
loading
Boosting the Sensitivity of Quantitative Single-Cell Proteomics with Infrared-Tandem Mass Tags.
Peters-Clarke, Trenton M; Liang, Yiran; Mertz, Keaton L; Lee, Kenneth W; Westphall, Michael S; Hinkle, Joshua D; McAlister, Graeme C; Syka, John E P; Kelly, Ryan T; Coon, Joshua J.
Afiliación
  • Peters-Clarke TM; Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
  • Liang Y; Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
  • Mertz KL; Department of Chemistry, Brigham Young University, Provo, Utah 84602, United States.
  • Lee KW; Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
  • Westphall MS; Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
  • Hinkle JD; Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
  • McAlister GC; Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.
  • Syka JEP; Thermo Fisher Scientific, San Jose, California 95134, United States.
  • Kelly RT; Thermo Fisher Scientific, San Jose, California 95134, United States.
  • Coon JJ; Thermo Fisher Scientific, San Jose, California 95134, United States.
J Proteome Res ; 2024 May 07.
Article en En | MEDLINE | ID: mdl-38713017
ABSTRACT
Single-cell proteomics is a powerful approach to precisely profile protein landscapes within individual cells toward a comprehensive understanding of proteomic functions and tissue and cellular states. The inherent challenges associated with limited starting material demand heightened analytical sensitivity. Just as advances in sample preparation maximize the amount of material that makes it from the cell to the mass spectrometer, we strive to maximize the number of ions that make it from ion source to the detector. In isobaric tagging experiments, limited reporter ion generation limits quantitative accuracy and precision. The combination of infrared photoactivation and ion parking circumvents the m/z dependence inherent in HCD, maximizing reporter generation and avoiding unintended degradation of TMT reporter molecules in infrared-tandem mass tags (IR-TMT). The method was applied to single-cell human proteomes using 18-plex TMTpro, resulting in 4-5-fold increases in reporter signal compared to conventional SPS-MS3 approaches. IR-TMT enables faster duty cycles, higher throughput, and increased peptide identification and quantification. Comparative experiments showcase 4-5-fold lower injection times for IR-TMT, providing superior sensitivity without compromising accuracy. In all, IR-TMT enhances the dynamic range of proteomic experiments and is compatible with gas-phase fractionation and real-time searching, promising increased gains in the study of cellular heterogeneity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos