Your browser doesn't support javascript.
loading
Loss of FMRP affects ovarian development and behaviour through multiple pathways in a zebrafish model of fragile X syndrome.
Rani, Rita; Sri, N Sushma; Medishetti, Raghavender; Chatti, Kiranam; Sevilimedu, Aarti.
Afiliación
  • Rani R; Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana 500046, India.
  • Sri NS; Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana 500046, India.
  • Medishetti R; Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana 500046, India.
  • Chatti K; Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana 500046, India.
  • Sevilimedu A; Center for Rare Disease Models, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana 500046, India.
Hum Mol Genet ; 33(16): 1391-1405, 2024 Aug 06.
Article en En | MEDLINE | ID: mdl-38710511
ABSTRACT
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder and the leading genetic cause of autism spectrum disorders. FXS is caused by loss of function mutations in Fragile X mental retardation protein (FMRP), an RNA binding protein that is known to regulate translation of its target mRNAs, predominantly in the brain and gonads. The molecular mechanisms connecting FMRP function to neurodevelopmental phenotypes are well understood. However, neither the full extent of reproductive phenotypes, nor the underlying molecular mechanisms have been as yet determined. Here, we developed new fmr1 knockout zebrafish lines and show that they mimic key aspects of FXS neuronal phenotypes across both larval and adult stages. Results from the fmr1 knockout females also showed that altered gene expression in the brain, via the neuroendocrine pathway contribute to distinct abnormal phenotypes during ovarian development and oocyte maturation. We identified at least three mechanisms underpinning these defects, including altered neuroendocrine signaling in sexually mature females resulting in accelerated ovarian development, altered expression of germ cell and meiosis promoting genes at various stages during oocyte maturation, and finally a strong mitochondrial impairment in late stage oocytes from knockout females. Our findings have implications beyond FXS in the study of reproductive function and female infertility. Dissection of the translation control pathways during ovarian development using models like the knockout lines reported here may reveal novel approaches and targets for fertility treatments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ovario / Pez Cebra / Proteínas de Pez Cebra / Modelos Animales de Enfermedad / Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil / Síndrome del Cromosoma X Frágil Límite: Animals / Female / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ovario / Pez Cebra / Proteínas de Pez Cebra / Modelos Animales de Enfermedad / Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil / Síndrome del Cromosoma X Frágil Límite: Animals / Female / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido