Your browser doesn't support javascript.
loading
Oxidation of chromium(Ⅲ): A potential risk of using chemical oxidation processes for the remediation of 2-chlorophenol contaminated soils.
Yu, Jie; Yu, Jiang; Deng, Siwei; Huang, Zhi; Wang, Ze; Zhu, Weiwei; Zhou, Xueling; Liu, Longyu; Wu, Donghai; Zhang, Hanyi.
Afiliación
  • Yu J; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China.
  • Yu J; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China. Electronic address: yuj@scu.edu.cn.
  • Deng S; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China.
  • Huang Z; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China.
  • Wang Z; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin, 644000, PR China.
  • Zhu W; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
  • Zhou X; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China.
  • Liu L; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, PR China.
  • Wu D; School of Life Sciences, Chongqing University, Chongqing, 400044, PR China.
  • Zhang H; Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
J Environ Manage ; 359: 120973, 2024 May.
Article en En | MEDLINE | ID: mdl-38703644
ABSTRACT
Chemical oxidation processes are widely used for the remediation of organically contaminated soils, but their potential impact on variable-valence and toxic metals such as chromium (Cr) is often overlooked. In this study, we investigated the risk of Cr(Ⅲ) oxidation in soils during the remediation of 2-chlorophenol (2-CP) contaminated soils using four different processes Potassium permanganate (KMnO4), Modified Fenton (Fe2+/H2O2), Alkali-activated persulfate (S2O82-/OH-), and Fe2+-activated persulfate (S2O82-/Fe2+). Our results indicated that the KMnO4, Fe2+/H2O2, and S2O82-/Fe2+ processes progressively oxidized Cr(III) to Cr(Ⅵ) during the 2-CP degradation. The KMnO4 process likely involved direct electron transfer, while the Fe2+/H2O2 and S2O82-/Fe2+ processes primarily relied on HO• and/or SO4•- for the Cr(III) oxidation. Notably, after 4 h of 2-CP degradation, the Cr(VI) content in the KMnO4 process surpassed China's 3.0 mg kg-1 risk screening threshold for Class I construction sites, and further exceeded the 5.7 mg kg-1 limit for Class II construction sites after 8 h. Conversely, the S2O82-/OH- process exhibited negligible oxidation of Cr(III), maintaining a low oxidation ratio of 0.13%, as highly alkaline conditions induced Cr(III) precipitation, reducing its exposure to free radicals. Cr(III) oxidation ratio was directly proportional to oxidant dosage, whereas the Fe2+/H2O2 process showed a different trend, influenced by the concentration of reductants. This study provides insights into the selection and optimization of chemical oxidation processes for soil remediation, emphasizing the imperative for thorough risk evaluation of Cr(III) oxidation before their application.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Suelo / Contaminantes del Suelo / Clorofenoles / Cromo / Restauración y Remediación Ambiental Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Suelo / Contaminantes del Suelo / Clorofenoles / Cromo / Restauración y Remediación Ambiental Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido