Your browser doesn't support javascript.
loading
Bose-Einstein condensation of non-ground-state caesium atoms.
Horvath, Milena; Dhar, Sudipta; Das, Arpita; Frye, Matthew D; Guo, Yanliang; Hutson, Jeremy M; Landini, Manuele; Nägerl, Hanns-Christoph.
Afiliación
  • Horvath M; Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck, Austria.
  • Dhar S; Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck, Austria.
  • Das A; Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, Durham DH1~3LE, United Kingdom.
  • Frye MD; Joint Quantum Centre (JQC) Durham-Newcastle, Department of Chemistry, Durham University, Durham, United Kingdom.
  • Guo Y; Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck, Austria.
  • Hutson JM; Joint Quantum Centre (JQC) Durham-Newcastle, Department of Chemistry, Durham University, Durham, United Kingdom.
  • Landini M; Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck, Austria.
  • Nägerl HC; Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck, Austria. christoph.naegerl@uibk.ac.at.
Nat Commun ; 15(1): 3739, 2024 May 03.
Article en En | MEDLINE | ID: mdl-38702339
ABSTRACT
Bose-Einstein condensates of ultracold atoms serve as low-entropy sources for a multitude of quantum-science applications, ranging from quantum simulation and quantum many-body physics to proof-of-principle experiments in quantum metrology and quantum computing. For stability reasons, in the majority of cases the energetically lowest-lying atomic spin state is used. Here, we report the Bose-Einstein condensation of caesium atoms in the Zeeman-excited mf = 2 state, realizing a non-ground-state Bose-Einstein condensate with tunable interactions and tunable loss. We identify two regions of magnetic field in which the two-body relaxation rate is low enough that condensation is possible. We characterize the phase transition and quantify the loss processes, finding unusually high three-body losses in one of the two regions. Our results open up new possibilities for the mixing of quantum-degenerate gases, for polaron and impurity physics, and in particular for the study of impurity transport in strongly correlated one-dimensional quantum wires.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Reino Unido