Your browser doesn't support javascript.
loading
ELRL-MD: a deep learning approach for myocarditis diagnosis using cardiac magnetic resonance images with ensemble and reinforcement learning integration.
Mirzaee Moghaddam Kasmaee, Adele; Ataei, Alireza; Moravvej, Seyed Vahid; Alizadehsani, Roohallah; Gorriz, Juan M; Zhang, Yu-Dong; Tan, Ru-San; Acharya, U Rajendra.
Afiliación
  • Mirzaee Moghaddam Kasmaee A; Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.
  • Ataei A; Department of Mathematics, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr 7516913817, Iran.
  • Moravvej SV; Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
  • Alizadehsani R; Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Australia.
  • Gorriz JM; Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain.
  • Zhang YD; Department of Informatics, University of Leicester, Leicester, United Kingdom.
  • Tan RS; Duke-NUS Medical School, Singapore, Singapore.
  • Acharya UR; School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia.
Physiol Meas ; 45(5)2024 May 21.
Article en En | MEDLINE | ID: mdl-38697206
ABSTRACT
Objective.Myocarditis poses a significant health risk, often precipitated by viral infections like coronavirus disease, and can lead to fatal cardiac complications. As a less invasive alternative to the standard diagnostic practice of endomyocardial biopsy, which is highly invasive and thus limited to severe cases, cardiac magnetic resonance (CMR) imaging offers a promising solution for detecting myocardial abnormalities.Approach.This study introduces a deep model called ELRL-MD that combines ensemble learning and reinforcement learning (RL) for effective myocarditis diagnosis from CMR images. The model begins with pre-training via the artificial bee colony (ABC) algorithm to enhance the starting point for learning. An array of convolutional neural networks (CNNs) then works in concert to extract and integrate features from CMR images for accurate diagnosis. Leveraging the Z-Alizadeh Sani myocarditis CMR dataset, the model employs RL to navigate the dataset's imbalance by conceptualizing diagnosis as a decision-making process.Main results.ELRL-DM demonstrates remarkable efficacy, surpassing other deep learning, conventional machine learning, and transfer learning models, achieving an F-measure of 88.2% and a geometric mean of 90.6%. Extensive experimentation helped pinpoint the optimal reward function settings and the perfect count of CNNs.Significance.The study addresses the primary technical challenge of inherent data imbalance in CMR imaging datasets and the risk of models converging on local optima due to suboptimal initial weight settings. Further analysis, leaving out ABC and RL components, confirmed their contributions to the model's overall performance, underscoring the effectiveness of addressing these critical technical challenges.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Aprendizaje Profundo / Miocarditis Límite: Humans Idioma: En Revista: Physiol Meas Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Aprendizaje Profundo / Miocarditis Límite: Humans Idioma: En Revista: Physiol Meas Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Reino Unido