Your browser doesn't support javascript.
loading
Validation of an automated, end-to-end metagenomic sequencing assay for agnostic detection of respiratory viruses.
Gauthier, Nick P G; Chan, Wilson; Locher, Kerstin; Smailus, Duane; Coope, Robin; Charles, Marthe; Jassem, Agatha; Kopetzky, Jennifer; Chorlton, Samuel D; Manges, Amee R.
Afiliación
  • Gauthier NPG; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
  • Chan W; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia.
  • Locher K; Division of Medical Microbiology, Vancouver General Hospital, Vancouver, British Columbia, Canada.
  • Smailus D; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
  • Coope R; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada.
  • Charles M; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada.
  • Jassem A; Division of Medical Microbiology, Vancouver General Hospital, Vancouver, British Columbia, Canada.
  • Kopetzky J; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
  • Chorlton SD; British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada.
  • Manges AR; British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada.
J Infect Dis ; 2024 May 02.
Article en En | MEDLINE | ID: mdl-38696336
ABSTRACT

BACKGROUND:

Current molecular diagnostics are limited in the number and type of detectable pathogens. Metagenomic next generation sequencing (mNGS) is an emerging, and increasingly feasible, pathogen-agnostic diagnostic approach. Translational barriers prohibit the widespread adoption of this technology in clinical laboratories. We validate an end-to-end mNGS assay for detection of respiratory viruses. Our assay is optimized to reduce turnaround time, lower cost-per-sample, increase throughput, and deploy secure and actionable bioinformatic results.

METHODS:

We validated our assay using residual nasopharyngeal swab specimens from Vancouver General Hospital (n = 359), RT-PCR-positive, or negative for Influenza, SARS-CoV-2, and RSV. We quantified sample stability, assay precision, the effect of background nucleic acid levels, and analytical limits of detection. Diagnostic performance metrics were estimated.

RESULTS:

We report that our mNGS assay is highly precise, semi-quantitative, with analytical limits of detection ranging from 103-104 copies/mL. Our assay is highly specific (100%) and sensitive (61.9% Overall 86.8%; RT-PCR Ct < 30). Multiplexing capabilities enable processing of up to 55-specimens simultaneously on an Oxford Nanopore GridION device, with results reported within 12-hours.

CONCLUSIONS:

This study outlines the diagnostic performance and feasibility of mNGS for respiratory viral diagnostics, infection control, and public health surveillance. We addressed translational barriers to widespread mNGS adoption.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Infect Dis Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Infect Dis Año: 2024 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos