Your browser doesn't support javascript.
loading
Machine Learning-Accelerated High-Throughput Computational Screening: Unveiling Bimetallic Nanoparticles with Peroxidase-Like Activity.
Wan, Kaiwei; Wang, Hui; Shi, Xinghua.
Afiliación
  • Wan K; Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
  • Wang H; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
  • Shi X; Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
ACS Nano ; 18(19): 12367-12376, 2024 May 14.
Article en En | MEDLINE | ID: mdl-38695521
ABSTRACT
Bimetallic nanoparticles (NPs) with peroxidase-like (POD-like) activity play a crucial role in biosensing, disease treatment, environmental management, and other fields. However, their development is impeded by a vast range of tunable properties in components and structures, making the establishment of structure-effect relationships and the discovery of active materials challenging. Addressing this, we established robust scaling relationships by meticulously analyzing the catalytic reaction networks of pure metal NPs, which laid the volcano-shaped correlation between the activity and O* adsorption energy. Utilizing these relationships, we introduced an innovative and versatile descriptor of the NPs, which was then integrated into a machine learning-accelerated high-throughput computational workflow, significantly boosting the predictive accuracy for the POD-like activity of bimetallic NPs. Our methodological approach enabled the successful prediction of activities for 1260 bimetallic NPs, leading to the identification of several highly effective catalysts. Furthermore, we distilled several strategies for designing efficient bimetallic NPs based on our screening results.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Aprendizaje Automático Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas del Metal / Aprendizaje Automático Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos