Your browser doesn't support javascript.
loading
Sulfur oxidation and reduction are coupled to nitrogen fixation in the roots of the salt marsh foundation plant Spartina alterniflora.
Rolando, J L; Kolton, M; Song, T; Liu, Y; Pinamang, P; Conrad, R; Morris, J T; Konstantinidis, K T; Kostka, J E.
Afiliación
  • Rolando JL; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
  • Kolton M; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
  • Song T; French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva, Israel.
  • Liu Y; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
  • Pinamang P; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
  • Conrad R; The Pennsylvania State University, Department of Civil & Environmental Engineering, University Park, PA, 16802, USA.
  • Morris JT; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
  • Konstantinidis KT; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
  • Kostka JE; Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia, SC, 29201, USA.
Nat Commun ; 15(1): 3607, 2024 Apr 29.
Article en En | MEDLINE | ID: mdl-38684658
ABSTRACT
Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from the Candidatus Thiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizing dsrA and nitrogen-fixing nifK transcripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Azufre / Raíces de Plantas / Humedales / Poaceae / Fijación del Nitrógeno Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Azufre / Raíces de Plantas / Humedales / Poaceae / Fijación del Nitrógeno Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido