Your browser doesn't support javascript.
loading
Effects of erythromycin on biofilm formation and resistance mutation of Escherichia coli on pristine and UV-aged polystyrene microplastics.
Han, Xiaofeng; Fu, Long; Yu, Jing; Li, Kunting; Deng, Ziqing; Shu, Ruihao; Wang, Dali; You, Jing; Zeng, Eddy Y.
Afiliación
  • Han X; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
  • Fu L; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
  • Yu J; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
  • Li K; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
  • Deng Z; BGI Research, Beijing 102601, China.
  • Shu R; BGI Research, Beijing 102601, China.
  • Wang D; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China. Electronic address: wdali2018@jnu.edu.cn.
  • You J; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
  • Zeng EY; Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
Water Res ; 256: 121628, 2024 Jun 01.
Article en En | MEDLINE | ID: mdl-38677035
ABSTRACT
Microplastics (MPs) and antibiotics co-occur widely in the environment and pose combined risk to microbial communities. The present study investigated the effects of erythromycin on biofilm formation and resistance mutation of a model bacterium, E. coli, on the surface of pristine and UV-aged polystyrene (PS) MPs sized 1-2 mm. The properties of UV-aged PS were significantly altered compared to pristine PS, with notable increases in specific surface area, carbonyl index, hydrophilicity, and hydroxyl radical content. Importantly, the adsorption capacity of UV-aged PS towards erythromycin was approximately 8-fold higher than that of pristine PS. Biofilms colonizing on UV-aged PS had a greater cell count (5.6 × 108 CFU mg-1) and a higher frequency of resistance mutation (1.0 × 10-7) than those on pristine PS (1.4 × 108 CFU mg-1 and 1.4 × 10-8, respectively). Moreover, erythromycin at 0.1 and 1.0 mg L-1 significantly (p < 0.05) promoted the formation and resistance mutation of biofilm on both pristine and UV-aged PS. DNA sequencing results confirmed that the biofilm resistance was attributed to point mutations in rpoB segment of the bacterial genome. qPCR results demonstrated that both UV aging and erythromycin repressed the expression levels of a global regulator rpoS in biofilm bacteria, as well as two DNA mismatch repair genes mutS and uvrD, which was likely to contribute to increased resistance mutation frequency.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliestirenos / Eritromicina / Biopelículas / Escherichia coli / Microplásticos / Mutación Idioma: En Revista: Water Res Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliestirenos / Eritromicina / Biopelículas / Escherichia coli / Microplásticos / Mutación Idioma: En Revista: Water Res Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido