Your browser doesn't support javascript.
loading
In silico analysis of the wheat BBX gene family and identification of candidate genes for seed dormancy and germination.
Cheng, Xinran; Lei, Shuying; Li, Jin; Tian, Bingbing; Li, Chunxiu; Cao, Jiajia; Lu, Jie; Ma, Chuanxi; Chang, Cheng; Zhang, Haiping.
Afiliación
  • Cheng X; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Lei S; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
  • Li J; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Tian B; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
  • Li C; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Cao J; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Lu J; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Ma C; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Chang C; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
  • Zhang H; College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China. Changc@ahau.edu.cn.
BMC Plant Biol ; 24(1): 334, 2024 Apr 25.
Article en En | MEDLINE | ID: mdl-38664603
ABSTRACT

BACKGROUND:

B-box (BBX) proteins are a type of zinc finger proteins containing one or two B-box domains. They play important roles in development and diverse stress responses of plants, yet their roles in wheat remain unclear.

RESULTS:

In this study, 96 BBX genes were identified in the wheat genome and classified into five subfamilies. Subcellular localization prediction results showed that 68 TaBBXs were localized in the nucleus. Protein interaction prediction analysis indicated that interaction was one way that these proteins exerted their functions. Promoter analysis indicated that TaBBXs may play important roles in light signal, hormone, and stress responses. qRT-PCR analysis revealed that 14 TaBBXs were highly expressed in seeds compared with other tissues. These were probably involved in seed dormancy and germination, and their expression patterns were investigated during dormancy acquisition and release in the seeds of wheat varieties Jing 411 and Hongmangchun 21, showing significant differences in seed dormancy and germination phenotypes. Subcellular localization analysis confirmed that the three candidates TaBBX2-2 A, TaBBX4-2 A, and TaBBX11-2D were nuclear proteins. Transcriptional self-activation experiments further demonstrated that TaBBX4-2A was transcriptionally active, but TaBBX2-2A and TaBBX11-2D were not. Protein interaction analysis revealed that TaBBX2-2A, TaBBX4-2A, and TaBBX11-2D had no interaction with each other, while TaBBX2-2A and TaBBX11-2D interacted with each other, indicating that TaBBX4-2A may regulate seed dormancy and germination by transcriptional regulation, and TaBBX2-2A and TaBBX11-2D may regulate seed dormancy and germination by forming a homologous complex.

CONCLUSIONS:

In this study, the wheat BBX gene family was identified and characterized at the genomic level by bioinformatics analysis. These observations provide a theoretical basis for future studies on the functions of BBXs in wheat and other species.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Triticum / Familia de Multigenes / Germinación / Latencia en las Plantas Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Triticum / Familia de Multigenes / Germinación / Latencia en las Plantas Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido