Your browser doesn't support javascript.
loading
Ecotoxicological strategies employing biochemical markers and organisms to monitor the efficacy of malathion photolysis treatment.
Imoski, Rafaela; Jarenko da Cruz, Laís; Palacio-Cortés, Angela Maria; Schafaschek, Ana Marta; Schwamberger, Eric; Mariotti, Pamella Regina; Bichibichi Borges, Andre Luis; Rodrigues-Silva, Fernando; Tentler Prola, Liziê Daniela; Navarro da Silva, Mario Antônio; Martins de Freitas, Adriane; Vinicius de Liz, Marcus.
Afiliación
  • Imoski R; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Jarenko da Cruz L; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Palacio-Cortés AM; Laboratory of Culicidae and Chironomidae Morphology and Physiology (LAMFIC(2)), Department of Zoology, Federal University of Parana (UFPR), Curitiba, Parana, Brazil.
  • Schafaschek AM; Laboratory of Culicidae and Chironomidae Morphology and Physiology (LAMFIC(2)), Department of Zoology, Federal University of Parana (UFPR), Curitiba, Parana, Brazil.
  • Schwamberger E; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Mariotti PR; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Bichibichi Borges AL; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Rodrigues-Silva F; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Tentler Prola LD; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Navarro da Silva MA; Laboratory of Culicidae and Chironomidae Morphology and Physiology (LAMFIC(2)), Department of Zoology, Federal University of Parana (UFPR), Curitiba, Parana, Brazil.
  • Martins de Freitas A; Laboratory of Ecotoxicology, Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
  • Vinicius de Liz M; Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Academic Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil. Electronic address: marcusliz@ut
Chemosphere ; 357: 142074, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38657693
ABSTRACT
The objective of this study was to assess the photolysis-mediated degradation of malathion in standard and commercial formulations, and to determine the toxicity of these degraded formulations. Degradation tests were carried out with 500 µg L-1 of malathion and repeated three times. The initial and residual toxicity was assessed by using Lactuca sativa seeds for phytotoxicity, Stegomyia aegypti larvae for acute toxicity, and Stegomyia aegypti mosquitoes (cultivated from the larval stage until emergence as mosquitoes) to evaluate the biochemical markers of sublethal concentrations. For the standard formulations the photolytic process efficiently reduced the initial concentration of malathion to levels below the regulatory limits however, the formation of byproducts was revealed by chromatography, which allowed for a more complete proposal of photolytic-mediated malathion degradation route. The degraded formulations inhibited the growth of L. sativa seeds, while only the untreated formulations showed larvicidal activity and mortality. Both formulations slightly inhibited acetylcholinesterase activity in S. aegypti mosquitoes, while the standard formulation decreased and the commercial formulation increased glutathione S-transferase activity. However, there were no significant differences for superoxide dismutase, esterase-α, esterase-ß and lipid peroxidation. These findings indicate that in the absence of the target compound, the presence of byproducts can alter the enzymatic activity. In general, photolysis effectively degrade malathion lower than the legislation values; however, longer treatment times must be evaluated for the commercial formulation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotólisis / Insecticidas / Larva / Malatión Límite: Animals Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotólisis / Insecticidas / Larva / Malatión Límite: Animals Idioma: En Revista: Chemosphere Año: 2024 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Reino Unido