Your browser doesn't support javascript.
loading
Conserved and specific gene expression patterns in the embryonic development of tardigrades.
Li, Chaoran; Yang, Zhixiang; Xu, Xiaofang; Meng, Lingling; Liu, Shihao; Yang, Dong.
Afiliación
  • Li C; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  • Yang Z; School of Life Sciences, Hebei University, Baoding, China.
  • Xu X; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  • Meng L; School of Life Sciences, Hebei University, Baoding, China.
  • Liu S; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  • Yang D; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
Evol Dev ; 26(3): e12476, 2024 May.
Article en En | MEDLINE | ID: mdl-38654704
ABSTRACT
Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regulación del Desarrollo de la Expresión Génica / Desarrollo Embrionario / Tardigrada Límite: Animals Idioma: En Revista: Evol Dev Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regulación del Desarrollo de la Expresión Génica / Desarrollo Embrionario / Tardigrada Límite: Animals Idioma: En Revista: Evol Dev Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos