Your browser doesn't support javascript.
loading
Isolation, screening and characterization of efficient cellulose-degrading fungal and bacterial strains and preparation of their consortium under in vitro studies.
Roy, Deblina; Gunri, Sunil Kumar; Pal, Kamal Krishna.
Afiliación
  • Roy D; Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India.
  • Gunri SK; Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India.
  • Pal KK; ICAR-National Institute of Abiotic Stress Management, Malegaon Khurd, Baramati, Maharashtra 413115 India.
3 Biotech ; 14(5): 131, 2024 May.
Article en En | MEDLINE | ID: mdl-38645793
ABSTRACT
In this investigation, cellulose-degrading fungi and bacteria were isolated from different partially decomposed cellulose-rich substrates, such as groundnut residues, rice straw, and rotten wood, following dilution plating techniques on carboxymethyl cellulose agar media and screening for potential cellulose degradation ability. The development of a clear halo zone surrounding the microbial colonies during the initial screening process using the Congo red test (20 isolates) suggested cellulose hydrolysis, and the highest cellulase production activity was implied by the isolates with the largest clear zone ratio (9 isolates). Using both macroscopic and microscopic examinations, as well as standard biochemical tests outlined in Bergey's Manual of Determinative Bacteriology, the genus-level identification of fungi and bacteria was accomplished. In order to molecularly identify the 4 isolated fungal and bacterial strains at the species level after being ultimately selected for cellulase production potential under in vitro studies, fungal and bacterial DNA was extracted and amplified by PCR using the universal primers ITS1 and ITS4 for fungi (ITS rRNA, 5.8S rRNA) and 8F and 1492R for bacterial isolates (16S rRNA). After sequencing, the PCR results were compared to other comparable sequences in GenBank (NCBI). Based on the available NCBI data, phylogenetic analysis of their ribosomal gene partial sequences revealed that DAJ2 (PP086700) shares 100% homology with Aspergillus foetidus, DTJ4 (PP086699) shares 99.74% similarity with Trichoderma atrobrunnium, DBJ6 (PP082584) shares 100% identity with Priestia megaterium, and DMB9 (PP082585) shares 99.88% homology with Micrococcus yunnanensis. The cellulolytic potential of Phanerochaete chrysosporium is well established. Therefore, it was considered a standard culture for comparison and was collected from the MTCC, Chandigarh, India. Overall, all 4 selected isolates and the check organism were mutually compatible or synergistic with each other, and their consortium is useful for the accelerated decomposition of organic constituents during rapid composting.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: 3 Biotech Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: 3 Biotech Año: 2024 Tipo del documento: Article Pais de publicación: Alemania