Your browser doesn't support javascript.
loading
Overcoming the preferred orientation problem in cryoEM with self-supervised deep-learning.
Liu, Yun-Tao; Fan, Hongcheng; Hu, Jason J; Zhou, Z Hong.
Afiliación
  • Liu YT; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
  • Fan H; California NanoSystems Institute, University of California, Los Angeles, CA, USA.
  • Hu JJ; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
  • Zhou ZH; California NanoSystems Institute, University of California, Los Angeles, CA, USA.
bioRxiv ; 2024 Apr 14.
Article en En | MEDLINE | ID: mdl-38645074
ABSTRACT
While advances in single-particle cryoEM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the so-called "preferred" orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep-learning-based software to address the preferred orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet's capability of generating near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, ß-galactosidases, and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred orientation problem.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos