Your browser doesn't support javascript.
loading
Thermogravimetric experiments based prediction of biomass pyrolysis behavior: A comparison of typical machine learning regression models in Scikit-learn.
Zhong, Yu; Liu, Fahang; Huang, Guozhe; Zhang, Juan; Li, Changhai; Ding, Yanming.
Afiliación
  • Zhong Y; Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; Institute for Natural Disaster Risk Prevention and Emergency Management, China University of Geosciences, Wuhan 430074, China.
  • Liu F; Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
  • Huang G; Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
  • Zhang J; Faculty of Engineering, China University of Geosciences, Wuhan 430074, China.
  • Li C; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, China.
  • Ding Y; Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; Institute for Natural Disaster Risk Prevention and Emergency Management, China University of Geosciences, Wuhan 430074, China. Electronic address: dingym@cug.edu.cn.
Mar Pollut Bull ; 202: 116361, 2024 May.
Article en En | MEDLINE | ID: mdl-38636345
ABSTRACT
A variety of machine learning (ML) models have been extensively utilized in predicting biomass pyrolysis owing to their prowess in deciphering complex non-linear relationships between inputs and outputs, but there is still a lack of consensus on the optimal methods. This study elaborates on the development, optimization, and evaluation of three ML methodologies, namely, artificial neural networks, random forest (RF), and support vector machines, aimed to determine the optimal model for accurate prediction of biomass pyrolysis behavior using thermogravimetric data. This work assesses the utility of thermal data derived from these models in the computation of kinetic and thermodynamic parameters, alongside an analysis of their statistical performance. Eventually, the RF model exhibits superior physical interpretability and the least discrepancy in predicting kinetic and thermodynamic parameters. Furthermore, a feature importance analysis conducted within the RF model framework quantitatively reveals that temperature and heating rate account for 98.5 % and 1.5 %, respectively.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Termogravimetría / Pirólisis / Redes Neurales de la Computación / Biomasa / Aprendizaje Automático Idioma: En Revista: Mar Pollut Bull Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Termogravimetría / Pirólisis / Redes Neurales de la Computación / Biomasa / Aprendizaje Automático Idioma: En Revista: Mar Pollut Bull Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido