Your browser doesn't support javascript.
loading
Enhancing the Electrochemical Performances of Disordered Li1.23Ni0.3Nb0.3Fe0.16O0.85F0.15 Cathode Material for Lithium-Ion Batteries by LiNbOx Coating.
Sheng, Huanxing; Zhao, Wenjing; Zhang, Zhehao; Fan, Qi; Jiang, Tian; Xu, Qingyu.
Afiliación
  • Sheng H; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
  • Zhao W; Wuxi Jiangnan Middle School, Wuxi 214000, China.
  • Zhang Z; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
  • Fan Q; School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
  • Jiang T; School of Chemistry and Chemical Engineering, Jiulonghu Campus, Southeast University, Nanjing 211189, China.
  • Xu Q; School of Physics, Southeast University, Nanjing 211189, China.
ACS Appl Mater Interfaces ; 16(17): 21771-21781, 2024 May 01.
Article en En | MEDLINE | ID: mdl-38634381
ABSTRACT
For the next generation of lithium-ion batteries (LIBs), it is primary to seek high capacity and long-lifetime electrode materials. Li-excess disordered rock-salt structure (DRS) cathodes have gained much attention due to their high specific capacity. However, Li-excess can lead to a decrease in the structural stability of an electrode material. A new Li-rich DRS oxyfluorides, Li1.23Ni0.3Nb0.3Fe0.16O0.85F0.15 (F0.15) with a series amounts of LiNbOx (LN) coating (0, 5, 10, and 15 wt % denoted as F0.15-LN0, F0.15-LN5, F0.15-LN10, and F0.15-LN15, respectively), are successfully synthesized and evaluated as cathode materials in LIBs. Among them, F0.15-LN10 exhibits the highest initial discharge specific capacity of 296.1 mAh g-1 (at a current density of 20 mA g-1) with the capacity retention rate of 14% higher than that of the uncoated F0.15 after 80 cycles. Even at 300 mA g-1, F0.15-LN10 still delivers the highest discharge specific capacity of 130 mAh g-1. After 20 cycles, the charge-transfer impedance of F0.15-LN10 remained the smallest. The characterizations indicate that LN coating reduces the surface polarization of the cathode materials, slows the interfacial side reactions between the electrolyte and the electrode, and speeds up the Li+ diffusion. These results demonstrate that LN coating is an effective strategy to improve the electrochemical performance.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos