Your browser doesn't support javascript.
loading
Clinical performance of AI-integrated risk assessment pooling reveals cost savings even at high prevalence of COVID-19.
Kamari, Farzin; Eller, Esben; Bøgebjerg, Mathias Emil; Capella, Ignacio Martínez; Galende, Borja Arroyo; Korim, Tomas; Øland, Pernille; Borup, Martin Lysbjerg; Frederiksen, Anja Rådberg; Ranjouriheravi, Amir; Al-Jwadi, Ahmed Faris; Mansour, Mostafa; Hansen, Sara; Diethelm, Isabella; Burek, Marta; Alvarez, Federico; Buch, Anders Glent; Mojtahedi, Nima; Röttger, Richard; Segtnan, Eivind Antonsen.
Afiliación
  • Kamari F; Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
  • Eller E; Ellergy, Odense, Denmark.
  • Bøgebjerg ME; Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
  • Capella IM; Innovation Unit, IdISSC, Hospital Clínico San Carlos, Madrid, Spain.
  • Galende BA; Grupo de Aplicación de Telecomunicaciones Visuales, Universidad Politécnica de Madrid, Madrid, Spain.
  • Korim T; Easyrobot, Bratislava, Slovakia.
  • Øland P; Hospital of Psychiatry, Odense, Denmark.
  • Borup ML; Hospital of Psychiatry, Odense, Denmark.
  • Frederiksen AR; Hospital of Psychiatry, Odense, Denmark.
  • Ranjouriheravi A; Research Center for Translational Medicine (KUTTAM), Graduate School of Sciences and Engineering, Koç University, Istanbul, Turkey.
  • Al-Jwadi AF; School of Medicine, University of Southern Denmark, Odense, Denmark.
  • Mansour M; SDU Health Informatics and Technology, Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
  • Hansen S; SDU Health Informatics and Technology, Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
  • Diethelm I; SDU Health Informatics and Technology, Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
  • Burek M; SDU Health Informatics and Technology, Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
  • Alvarez F; Grupo de Aplicación de Telecomunicaciones Visuales, Universidad Politécnica de Madrid, Madrid, Spain.
  • Buch AG; Department of Engineering, Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
  • Mojtahedi N; Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
  • Röttger R; Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
  • Segtnan EA; Department of Neurosurgery, Odense University Hospital, Odense, Denmark. Eivind@segtnan.ai.
Sci Rep ; 14(1): 8853, 2024 04 17.
Article en En | MEDLINE | ID: mdl-38632289
ABSTRACT
Individual testing of samples is time- and cost-intensive, particularly during an ongoing pandemic. Better practical alternatives to individual testing can significantly decrease the burden of disease on the healthcare system. Herein, we presented the clinical validation of Segtnan™ on 3929 patients. Segtnan™ is available as a mobile application entailing an AI-integrated personalized risk assessment approach with a novel data-driven equation for pooling of biological samples. The AI was selected from a comparison between 15 machine learning classifiers (highest accuracy = 80.14%) and a feed-forward neural network with an accuracy of 81.38% in predicting the rRT-PCR test results based on a designed survey with minimal clinical questions. Furthermore, we derived a novel pool-size equation from the pooling data of 54 published original studies. The results demonstrated testing capacity increase of 750%, 60%, and 5% at prevalence rates of 0.05%, 22%, and 50%, respectively. Compared to Dorfman's method, our novel equation saved more tests significantly at high prevalence, i.e., 28% (p = 0.006), 40% (p = 0.00001), and 66% (p = 0.02). Lastly, we illustrated the feasibility of the Segtnan™ usage in clinically complex settings like emergency and psychiatric departments.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: COVID-19 Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: COVID-19 Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido