Your browser doesn't support javascript.
loading
High-Quality Solution-Processed Quasi-2D Perovskite for Low-Threshold Lasers.
Zhao, Kefan; Wang, Yujing; Lin, Kai; Ji, Ting; Shi, Linlin; Zheng, Kaibo; Cui, Yanxia; Li, Guohui.
Afiliación
  • Zhao K; College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
  • Wang Y; College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
  • Lin K; College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
  • Ji T; College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
  • Shi L; College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
  • Zheng K; Chemical Physics Division and NanoLund, Lund University, Box 124, Lund 22100, Sweden.
  • Cui Y; College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
  • Li G; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030006, China.
ACS Appl Mater Interfaces ; 16(17): 22361-22368, 2024 May 01.
Article en En | MEDLINE | ID: mdl-38628106
ABSTRACT
Spin-coated quasi-two-dimensional halide perovskite films, which exhibit superior optoelectronic properties and environmental stability, have recently been extensively studied for lasers. Crystallinity is of great importance for the laser performance. Although some parameters related to the spin-coating process have been studied, the in-depth understanding and effective control of the acceleration rate on two-dimensional perovskite crystallization during spin-coating are still unknown. Here we investigate the effect of solvent evaporation on the microstructure of the final perovskite films during the spin-coating process. The crystallization quality of the film can be significantly improved by controlling solvent evaporation. As a result, the prepared quasi-2D perovskite film exhibits a stimulated emission threshold (pump 343 nm, 6 kHz, 290 fs) of 550 nm as low as 16.2 µJ/cm2. Transient absorption characterization shows that the radiative biexciton recombination time is reduced from 738.5 to 438.3 ps, benefiting from the improved crystallinity. The faster biexciton recombination significantly enhanced the photoluminescence efficiency, which is critical for population inversion. This work could contribute to the development of low-threshold lasers.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos