Your browser doesn't support javascript.
loading
Russell Mechanism-Mediated Cancer Therapy: A Minireview.
Zhang, Rufeng; Liu, Xiaoyang; Wu, Fu-Gen.
Afiliación
  • Zhang R; State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
  • Liu X; State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
  • Wu FG; State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
ChemMedChem ; 19(14): e202400186, 2024 Jul 15.
Article en En | MEDLINE | ID: mdl-38627921
ABSTRACT
The Russell mechanism, proposed by Russell, is a cyclic mechanism for the formation of linear tetroxide intermediates, which can spontaneously produce cytotoxic singlet oxygen (1O2) independent of oxygen, suggesting its anticancer potential. Compared with other mainstream anticancer strategies, the Russell mechanism employed for killing cancer cells does not require external energy input, harsh pH condition, and sufficient oxygen. However, up till now, the applications of Russell mechanism in antitumor therapy have been relatively rare, and there is almost no summary of the Russell mechanism in the cancer therapy field. This minireview introduces the different metal elements-based Russell mechanisms and the relevant research progress in Russell mechanism-based cancer therapy in recent years. At the same time, we briefly discussed the current challenges and future development regarding the applications of Russell mechanism. It is hoped that this review can further expand the research of Russell Mechanism in the biomedical field, and inspire researchers to extend its application fields to antibacterial, antiinflammatory, and wound healing uses.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias / Antineoplásicos Límite: Humans Idioma: En Revista: ChemMedChem Asunto de la revista: FARMACOLOGIA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias / Antineoplásicos Límite: Humans Idioma: En Revista: ChemMedChem Asunto de la revista: FARMACOLOGIA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania