Your browser doesn't support javascript.
loading
Penicillium oxalicum induced phosphate precipitation enhanced cadmium (Cd) immobilization by simultaneously accelerating Cd biosorption and biomineralization.
Yue, Jiaru; Li, Ting; Tian, Jiang; Ge, Fei; Li, Feng; Liu, Yun; Zhang, Dayi; Li, Jingwei.
Afiliación
  • Yue J; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China.
  • Li T; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China.
  • Tian J; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China. Electronic address: tianjiangjames23@xtu.edu.cn.
  • Ge F; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China.
  • Li F; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China.
  • Liu Y; Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, China.
  • Zhang D; College of New Energy and Environment, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China.
  • Li J; Vegetable Industry Research Institute, Guizhou University, Guiyang 550000, Guizhou, China. Electronic address: ljw198@yeah.net.
J Hazard Mater ; 470: 134306, 2024 May 15.
Article en En | MEDLINE | ID: mdl-38626684
ABSTRACT
Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Penicillium / Fosfatos / Cadmio / Biomineralización Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Penicillium / Fosfatos / Cadmio / Biomineralización Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos