Thermally Activated Delayed Fluorescence with Nanosecond Emission Lifetimes and Minor Concentration Quenching: Achieving High-Performance Nondoped and Doped Blue OLEDs.
Adv Mater
; 36(26): e2401724, 2024 Jun.
Article
en En
| MEDLINE
| ID: mdl-38575151
ABSTRACT
Simultaneously achieving a high photoluminescence quantum yield (PLQY), ultrashort exciton lifetime, and suppressed concentration quenching in thermally activated delayed fluorescence (TADF) materials is desirable yet challenging. Here, a novel acceptor-donor-acceptor type TADF emitter, namely, 2BO-sQA, wherein two oxygen-bridged triarylboron (BO) acceptors are arranged with cofacial alignment and positioned nearly orthogonal to the rigid dispirofluorene-quinolinoacridine (sQA) donor is reported. This molecular design enables the compound to achieve highly efficient (PLQYs up to 99%) and short-lived (nanosecond-scale) blue TADF with effectively suppressed concentration quenching in films. Consequently, the doped organic light-emitting diodes (OLEDs) base on 2BO-sQA achieve exceptional electroluminescence performance across a broad range of doping concentrations, maintaining maximum external quantum efficiencies (EQEs) at over 30% for doping concentrations ranging from 10 to 70 wt%. Remarkably, the nondoped blue OLED achieves a record-high maximum EQE of 26.6% with a small efficiency roll-off of 14.0% at 1000 candelas per square meter. By using 2BO-sQA as the sensitizer for the multiresonance TADF emitter ν-DABNA, TADF-sensitized fluorescence OLEDs achieve high-efficiency deep-blue emission. These results demonstrate the feasibility of this molecular design in developing TADF emitters with high efficiency, ultrashort exciton lifetime, and minimal concentration quenching.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania