Enhanced Arabic disaster data classification using domain adaptation.
PLoS One
; 19(4): e0301255, 2024.
Article
en En
| MEDLINE
| ID: mdl-38574077
ABSTRACT
Natural disasters, like pandemics and earthquakes, are some of the main causes of distress and casualties. Governmental crisis management processes are crucial when dealing with these types of problems. Social media platforms are among the main sources of information regarding current events and public opinion. So, they have been used extensively to aid disaster detection and prevention efforts. Therefore, there is always a need for better automatic systems that can detect and classify disaster data of social media. In this work, we propose enhanced Arabic disaster data classification models. The suggested models utilize domain adaptation to provide state-of-the-art accuracy. We used a standard dataset of Arabic disaster data collected from Twitter for testing the proposed models. Experimental results show that the provided models significantly outperform the previous state-of-the-art results.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Planificación en Desastres
/
Desastres
/
Terremotos
/
Medios de Comunicación Sociales
/
Desastres Naturales
Límite:
Humans
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Egipto
Pais de publicación:
Estados Unidos