Your browser doesn't support javascript.
loading
Light-induced electronic polarization in antiferromagnetic Cr2O3.
Zhang, Xinshu; Carbin, Tyler; Culver, Adrian B; Du, Kai; Wang, Kefeng; Cheong, Sang-Wook; Roy, Rahul; Kogar, Anshul.
Afiliación
  • Zhang X; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA.
  • Carbin T; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA.
  • Culver AB; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA.
  • Du K; Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA.
  • Wang K; Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ, USA.
  • Cheong SW; Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ, USA.
  • Roy R; Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ, USA.
  • Kogar A; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA.
Nat Mater ; 23(6): 790-795, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38561519
ABSTRACT
In a solid, the electronic subsystem can exhibit incipient order with lower point group symmetry than the crystal lattice. Ultrafast external fields that couple exclusively to electronic order parameters have rarely been investigated, however, despite their potential importance in inducing exotic effects. Here we show that when inversion symmetry is broken by the antiferromagnetic order in Cr2O3, transmitting a linearly polarized light pulse through the crystal gives rise to an in-plane rotational symmetry-breaking (from C3 to C1) via optical rectification. Using interferometric time-resolved second harmonic generation, we show that the ultrafast timescale of the symmetry reduction is indicative of a purely electronic response; the underlying spin and crystal structures remain unaffected. The symmetry-broken state exhibits a dipole moment, and its polar axis can be controlled with the incident light. Our results establish a coherent nonlinear optical protocol by which to break electronic symmetries and produce unconventional electronic effects in solids.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido