Your browser doesn't support javascript.
loading
Influence of boundary layer jets on the vertical distribution of ozone in Guangdong, China.
He, Yuanping; Fan, Shaojia; Wang, Yiming; Liu, Yiming; Lu, Xiao; Wang, Haolin; He, Cheng; Mai, Chuying; Du, Yu.
Afiliación
  • He Y; Nanhai Branch of Foshan Ecological Environment Bureau, Foshan 528200, China; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory o
  • Fan S; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
  • Wang Y; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
  • Liu Y; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
  • Lu X; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
  • Wang H; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
  • He C; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
  • Mai C; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
  • Du Y; School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Sc
Sci Total Environ ; 927: 171874, 2024 Jun 01.
Article en En | MEDLINE | ID: mdl-38537834
ABSTRACT
The planetary boundary layer (PBL) characteristics during ozone (O3) episodes in China have been extensively studied; however, knowledge of the impact of boundary layer jets (BLJs) on O3 vertical distribution is limited. This study conducted a field campaign from 1 to 8 December 2020 to examine the vertical structure of the O3 concentration and wind velocity within the boundary layer at two sites (Foshan FS, Maoming MM) in Guangdong. Utilising lidar observations and the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), distinct spatial distribution patterns of O3 over FS and MM influenced by BLJs were identified. The BLJs at both locations exhibited pronounced diurnal variations with a nocturnal maximum exceeding 11 m/s at a height of approximately 500 m. The nocturnal enhancement of BLJs resulted from inertial oscillations coupled with diurnal thermal forcing over sloping terrain. A stronger BLJ at FS induced an evident uplift of O3 and the prevailing northeasterly wind facilitated the transport of O3 in the nocturnal residual layer from FS to MM. After sunrise, surface heating and the development of the PBL caused the air mass with elevated O3 levels in the residual layer to descend to ground level. At MM, calm surface winds, a weaker BLJ at 500 m height, and strong downdrafts collectively contributed to a significant increase in surface O3 concentration in subsequent days. These findings contribute to our understanding of the interactions between BLJs and variations in surface air pollutant concentrations, thereby providing important insights for future regional emissions control measures.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos