Your browser doesn't support javascript.
loading
Inferring Parameters of Pyramidal Neuron Excitability in Mouse Models of Alzheimer's Disease Using Biophysical Modeling and Deep Learning.
Saghafi, Soheil; Rumbell, Timothy; Gurev, Viatcheslav; Kozloski, James; Tamagnini, Francesco; Wedgwood, Kyle C A; Diekman, Casey O.
Afiliación
  • Saghafi S; Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA.
  • Rumbell T; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
  • Gurev V; IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
  • Kozloski J; IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
  • Tamagnini F; IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
  • Wedgwood KCA; Pharmacology, University of Reading, Reading, UK.
  • Diekman CO; Mathematics and Statistics, University of Exeter, Exeter, UK.
Bull Math Biol ; 86(5): 46, 2024 Mar 25.
Article en En | MEDLINE | ID: mdl-38528167
ABSTRACT
Alzheimer's disease (AD) is believed to occur when abnormal amounts of the proteins amyloid beta and tau aggregate in the brain, resulting in a progressive loss of neuronal function. Hippocampal neurons in transgenic mice with amyloidopathy or tauopathy exhibit altered intrinsic excitability properties. We used deep hybrid modeling (DeepHM), a recently developed parameter inference technique that combines deep learning with biophysical modeling, to map experimental data recorded from hippocampal CA1 neurons in transgenic AD mice and age-matched wildtype littermate controls to the parameter space of a conductance-based CA1 model. Although mechanistic modeling and machine learning methods are by themselves powerful tools for approximating biological systems and making accurate predictions from data, when used in isolation these approaches suffer from distinct shortcomings model and parameter uncertainty limit mechanistic modeling, whereas machine learning methods disregard the underlying biophysical mechanisms. DeepHM addresses these shortcomings by using conditional generative adversarial networks to provide an inverse mapping of data to mechanistic models that identifies the distributions of mechanistic modeling parameters coherent to the data. Here, we demonstrated that DeepHM accurately infers parameter distributions of the conductance-based model on several test cases using synthetic data generated with complex underlying parameter structures. We then used DeepHM to estimate parameter distributions corresponding to the experimental data and infer which ion channels are altered in the Alzheimer's mouse models compared to their wildtype controls at 12 and 24 months. We found that the conductances most disrupted by tauopathy, amyloidopathy, and aging are delayed rectifier potassium, transient sodium, and hyperpolarization-activated potassium, respectively.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tauopatías / Enfermedad de Alzheimer / Aprendizaje Profundo Límite: Animals Idioma: En Revista: Bull Math Biol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tauopatías / Enfermedad de Alzheimer / Aprendizaje Profundo Límite: Animals Idioma: En Revista: Bull Math Biol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos