Your browser doesn't support javascript.
loading
Arginine with leucine drives reactive oxygen species-mediated integrin α5ß1 expression and promotes implantation in mouse blastocysts.
Nakazato, Momoka; Matsuzaki, Mumuka; Okai, Daiki; Takeuchi, Eisaku; Seki, Misato; Takeuchi, Miki; Fukui, Emiko; Matsumoto, Hiromichi.
Afiliación
  • Nakazato M; Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
  • Matsuzaki M; Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
  • Okai D; Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
  • Takeuchi E; Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
  • Seki M; Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
  • Takeuchi M; Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
  • Fukui E; Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
  • Matsumoto H; Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan.
PNAS Nexus ; 3(3): pgae114, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38525303
ABSTRACT
The implantation rate of in vitro fertilization (IVF)-derived blastocysts after embryo transfer remains low, suggesting that the inadequate expression of specific proteins in culture-induced IVF-derived blastocysts contributes to low implantation rates. Therefore, treatment with appropriate regulation may improve the blastocyst implantation ability. This study demonstrated that the combination of l-arginine (Arg) and l-leucine (Leu) exerts distinct effects on IVF-derived mouse blastocysts. Arg with Leu promotes blastocyst implantation, whereas Arg alone decreases the blastocyst ability. Integrin α5ß1 expression was increased in blastocysts treated with Arg and Leu. Arg with Leu also increased reactive oxygen species (ROS) levels and showed a positive correlation with integrin α5ß1. Ascorbic acid, an antioxidant, decreased ROS and integrin α5ß1 levels, which were elevated by Arg with Leu. Meanwhile, the mitochondrial membrane potential (ΔΨm) in blastocysts did not differ between treatments. Glutathione peroxidase (GPx) is involved in ROS scavenging using glutathione (GSH) as a reductant. Arg with Leu decreased GPx4 and GSH levels in blastocysts, and blastocysts with higher ROS levels had lower GPx4 and GSH levels. In contrast, Arg alone increased the percentage of caspase-positive cells, indicating that Arg alone, which attenuated implantation ability, was associated with apoptosis. This study revealed that elevated ROS levels induced by Arg with Leu stimulated integrin α5ß1 expression, thereby enhancing implantation capacity. Our results also suggest that ROS were not due to increased production by oxidative phosphorylation, but rather to a reduction in ROS degradation due to diminished GPx4 and GSH levels.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: PNAS Nexus Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido