Your browser doesn't support javascript.
loading
Electrochemical biosensing platform based on AuNWs/rGO-CMC-PEDOT:PSS composite for the detection of superoxide anion released from living cells.
Jiang, Renjun; Liu, Jiaojiao; Liu, Xiaoqiang; Travas Sejdic, Jadranka.
Afiliación
  • Jiang R; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China.
  • Liu J; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China.
  • Liu X; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemical and Molecular Sciences, Henan University, Kaifeng, 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, 475004, China. Electronic address: liuxq@henu.edu.cn.
  • Travas Sejdic J; Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand. Electronic address
Biosens Bioelectron ; 254: 116228, 2024 Jun 15.
Article en En | MEDLINE | ID: mdl-38522233
ABSTRACT
Detection of superoxide anion (O2·-) levels holds significant importance for the diagnosis and even clinical treatments of oxidative stress-related diseases. Herein, we prepared a composite electrode material to encapsulate copper-zinc superoxide dismutase (SOD1) for biosensing of O2·-. The sensing material consists of gold nanowires (AuNWs), reduced graphene oxide (rGO), carboxymethyl cellulose (CMC) and PEDOTPSS. CMC provides abundant -COOH to bind SOD1, with a high adsorption coverage of 1.499 × 10-9 mol cm-2 on the sensor surface. rGO and PEDOT endow the composite with significant conductivity, whereas PSS has antifouling capability. Moreover, AuNWs exhibit excellent electrical conductivity and a high aspect ratio, which promotes electron transfer, and ultimately enhances the catalytic performance of the enzyme. Meanwhile, SOD1(Cu2+) catalyzes the dismutation of O2·- to O2 and H2O2, and H2O2 is then electrochemically oxidized to generate amperometric signals for determination of O2·-. The sensor demonstrates outstanding detection performance for O2·- with a low detection limit of 2.52 nM, and two dynamic ranges (14.30 nM-1.34 µM and 1.34 µM-42.97 µM) with corresponding sensitivity of 0.479 and 0.052 µA µM-1cm-2, respectively. Additionally, the calculated apparent Michaelis constant (Kmapp) of 1.804 µM for SOD1 demonstrates the outstanding catalytic activity and the surface-immobilized enzyme's substrate affinity. Furthermore, the sensor shows the capability to dynamically detect the level of O2·- released from living HepG2 cells. This study provides an inovative design to obtain a biocompatible electrochemical sensing platform with plenty of immobilization sites for biomolecules, large surface area, high conductivity and flexibility.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Grafito Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Grafito Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido