Your browser doesn't support javascript.
loading
Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations.
Lou, Jingzhi; Liang, Weiwen; Cao, Lirong; Hu, Inchi; Zhao, Shi; Chen, Zigui; Chan, Renee Wan Yi; Cheung, Peter Pak Hang; Zheng, Hong; Liu, Caiqi; Li, Qi; Chong, Marc Ka Chun; Zhang, Yexian; Yeoh, Eng-Kiong; Chan, Paul Kay-Sheung; Zee, Benny Chung Ying; Mok, Chris Ka Pun; Wang, Maggie Haitian.
Afiliación
  • Lou J; JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
  • Liang W; Beth Bioinformatics Co. Ltd, Hong Kong SAR, China.
  • Cao L; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
  • Hu I; JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
  • Zhao S; CUHK Shenzhen Research Institute, Shenzhen, China.
  • Chen Z; Department of Statistics, George Mason University, Fairfax, VA, USA.
  • Chan RWY; JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
  • Cheung PPH; School of Public Health, Tianjin Medical University, Tianjin, China.
  • Zheng H; Department of Microbiology, CUHK, Hong Kong SAR, China.
  • Liu C; Department of Paediatrics, CUHK, Hong Kong SAR, China.
  • Li Q; Hong Kong Hub of Paediatric Excellence, CUHK, Hong Kong SAR, China.
  • Chong MKC; Department of Chemical Pathology, CUHK, Hong Kong SAR, China.
  • Zhang Y; JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
  • Yeoh EK; JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
  • Chan PK; JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
  • Zee BCY; JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
  • Mok CKP; CUHK Shenzhen Research Institute, Shenzhen, China.
  • Wang MH; Beth Bioinformatics Co. Ltd, Hong Kong SAR, China.
Nat Commun ; 15(1): 2546, 2024 Mar 21.
Article en En | MEDLINE | ID: mdl-38514647
ABSTRACT
Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vacunas contra la Influenza / Gripe Humana Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vacunas contra la Influenza / Gripe Humana Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido