Your browser doesn't support javascript.
loading
Soil microbial functional profiles of P-cycling reveal drought-induced constraints on P-transformation in a hyper-arid desert ecosystem.
Gao, Yanju; Tariq, Akash; Zeng, Fanjiang; Sardans, Jordi; Graciano, Corina; Li, Xiangyi; Wang, Weiqi; Peñuelas, Josep.
Afiliación
  • Gao Y; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid
  • Tariq A; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid
  • Zeng F; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid
  • Sardans J; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
  • Graciano C; Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
  • Li X; Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid
  • Wang W; Key Laboratory of Humid Subtropical Ecological-Geographical Processes, Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China.
  • Peñuelas J; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
Sci Total Environ ; 925: 171767, 2024 May 15.
Article en En | MEDLINE | ID: mdl-38499102
ABSTRACT
Soil water conditions are known to influence soil nutrient availability, but the specific impact of different conditions on soil phosphorus (P) availability through the modulation of P-cycling functional microbial communities in hyper-arid desert ecosystems remains largely unexplored. To address this knowledge gap, we conducted a 3-year pot experiment using a typical desert plant species (Alhagi sparsifolia Shap.) subjected to two water supply levels (25 %-35 % and 65 %-75 % of maximum field capacity, MFC) and four P-supply levels (0, 1, 3, and 5 g P m-2 y-1). Our investigation focused on the soil Hedley-P pool and the four major microbial groups involved in the critical phases of soil microbial P-cycling. The results revealed that the drought (25 %-35 % MFC) and no P-supply treatments reduced soil resin-P and NaHCO3-Pi concentrations by 87.03 % and 93.22 %, respectively, compared to the well-watered (65 %-75 % MFC) and high P-supply (5 g P m-2 y-1) treatments. However, the P-supply treatment resulted in a 12 %-22 % decrease in the soil NH4+-N concentration preferred by microbes compared to the no P-supply treatment. Moreover, the abundance of genes engaged in microbial P-cycling (e.g. gcd and phoD) increased under the drought and no P-supply treatments (p < 0.05), suggesting that increased NH4+-N accumulation under these conditions may stimulate P-solubilizing microbes, thereby promoting the microbial community's investment in resources to enhance the P-cycling potential. Furthermore, the communities of Steroidobacter cummioxidans, Mesorhizobium alhagi, Devosia geojensis, and Ensifer sojae, associated with the major P-cycling genes, were enriched in drought and no or low-P soils. Overall, the drought and no or low-P treatments stimulated microbial communities and gene abundances involved in P-cycling. However, this increase was insufficient to maintain soil P-bioavailability. These findings shed light on the responses and feedback of microbial-mediated P-cycling behaviors in desert ecosystems under three-year drought and soil P-deficiency.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ecosistema / Microbiota Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ecosistema / Microbiota Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos