Your browser doesn't support javascript.
loading
Tensile nanostructured hierarchically porous non-precious transition metal-based electrocatalyst for durable anion exchange membrane-based water electrolysis.
Singh, Kailash; Selvaraj, Kaliaperumal.
Afiliación
  • Singh K; Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
  • Selvaraj K; Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Microscopy Facility, CSIR-National Chemical Laboratory, Pune 411008, India. Electronic address: k.selvaraj@ncl.res.in.
J Colloid Interface Sci ; 664: 389-399, 2024 Jun 15.
Article en En | MEDLINE | ID: mdl-38479275
ABSTRACT
Electrochemical water electrolysis is a promising method for sustainable hydrogen production while transiting towards hydrogen economy. Among many, the Anion Exchange Membrane (AEM) based water electrolyzer is an emerging yet potentially affordable technology on maturity for producing large-scale hydrogen accommodating the usage of Non-Platinum Group Metal (non-PGM) based inexpensive electrocatalysts. Herein, we demonstrate the excellent performance of a bifunctional Nickel Copper Phosphide-Nickel sulphide (NCP-NS) electrocatalyst with a unique tensile nanostructure obtained via a facile, controlled ambient galvanic displacement route. An AEM electrolyzer with a larger active area of 10 cm2 stacked with the symmetric NCP-NS electrodes and a membrane demonstrates scalability with a requirement of a mere 1.66 V to reach a current density of 10 mA cm-2. The nickel-copper phosphide boosts the kinetics of charge transfer between the electrode and electrolyte interface, while a unique combination of a few nickel sulphide phases present in the catalyst provides sufficiently appropriate active sites for the overall water electrolysis. For the first time, we report a room temperature performance of âˆ¼ 230 mA cm-2 at 2 V for a non-PGM-based bifunctional electrocatalyst with exceptional durability for over 300 h of operation in an AEM water electrolyser with a retention rate of 95 %-97 % at a current density range of 80-800 mA cm-2.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos