Your browser doesn't support javascript.
loading
Widespread prevalence of a methylation-dependent switch to activate an essential DNA damage response in bacteria.
Kamat, Aditya; Tran, Ngat T; Sharda, Mohak; Sontakke, Neha; Le, Tung B K; Badrinarayanan, Anjana.
Afiliación
  • Kamat A; National Centre for Biological Sciences (TIFR), Bengaluru, India.
  • Tran NT; John Innes Centre, Department of Molecular Microbiology, Colney Lane, Norwich, United Kingdom.
  • Sharda M; National Centre for Biological Sciences (TIFR), Bengaluru, India.
  • Sontakke N; National Centre for Biological Sciences (TIFR), Bengaluru, India.
  • Le TBK; John Innes Centre, Department of Molecular Microbiology, Colney Lane, Norwich, United Kingdom.
  • Badrinarayanan A; National Centre for Biological Sciences (TIFR), Bengaluru, India.
PLoS Biol ; 22(3): e3002540, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38466718
ABSTRACT
DNA methylation plays central roles in diverse cellular processes, ranging from error-correction during replication to regulation of bacterial defense mechanisms. Nevertheless, certain aberrant methylation modifications can have lethal consequences. The mechanisms by which bacteria detect and respond to such damage remain incompletely understood. Here, we discover a highly conserved but previously uncharacterized transcription factor (Cada2), which orchestrates a methylation-dependent adaptive response in Caulobacter. This response operates independently of the SOS response, governs the expression of genes crucial for direct repair, and is essential for surviving methylation-induced damage. Our molecular investigation of Cada2 reveals a cysteine methylation-dependent posttranslational modification (PTM) and mode of action distinct from its Escherichia coli counterpart, a trait conserved across all bacteria harboring a Cada2-like homolog instead. Extending across the bacterial kingdom, our findings support the notion of divergence and coevolution of adaptive response transcription factors and their corresponding sequence-specific DNA motifs. Despite this diversity, the ubiquitous prevalence of adaptive response regulators underscores the significance of a transcriptional switch, mediated by methylation PTM, in driving a specific and essential bacterial DNA damage response.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Metilación de ADN Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Metilación de ADN Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos