Your browser doesn't support javascript.
loading
Biosynthesis Parameters Control the Physicochemical and Catalytic Properties of Microbially Supported Pd Nanoparticles.
Morriss, Christopher Egan; Cheung, Casey K; Nunn, Elliot; Parmeggiani, Fabio; Powell, Nigel A; Kimber, Richard L; Haigh, Sarah J; Lloyd, Jonathan R.
Afiliación
  • Morriss CE; Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Cheung CK; Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Nunn E; Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Parmeggiani F; Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Powell NA; Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, Milan, 20133, Italy.
  • Kimber RL; Johnson Matthey Technology Centre, Reading, RG4 9NH, UK.
  • Haigh SJ; Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
  • Lloyd JR; Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Small ; 20(31): e2311016, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38461530
ABSTRACT
The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II)Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Paladio / Geobacter / Nanopartículas del Metal Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Paladio / Geobacter / Nanopartículas del Metal Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania