Your browser doesn't support javascript.
loading
Human-like acceleration and deceleration control of a robot astronaut floating in a space station.
Shen, Minghui; Huang, Xiao; Zhao, Yan; Wang, Yunlai; Li, Hui; Jiang, Zhihong.
Afiliación
  • Shen M; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems of Chinese Ministry of Education, Beijing, 100081, China.
  • Huang X; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems of Chinese Ministry of Education, Beijing, 100081, China.
  • Zhao Y; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems of Chinese Ministry of Education, Beijing, 100081, China.
  • Wang Y; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems of Chinese Ministry of Education, Beijing, 100081, China.
  • Li H; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems of Chinese Ministry of Education, Beijing, 100081, China. Electronic address: lihui2011@bit.edu.cn.
  • Jiang Z; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Biomimetic Robots and Systems of Chinese Ministry of Education, Beijing, 100081, China. Electronic address: jiangzhihong@bit.edu.cn.
ISA Trans ; 148: 397-411, 2024 May.
Article en En | MEDLINE | ID: mdl-38458904
ABSTRACT
The acceleration and deceleration (AD) motions are the basic motion modes of robot astronauts moving in a space station. Controlling the locomotion of the robot astronaut is very challenging due to the strong nonlinearity of its complex multi-body dynamics in a gravity-free environment. However, after training, humans can move well in space stations by pushing the bulkhead, and the motion mechanism of humans is a good reference for robot astronauts. The contribution of this study is modeling the human AD motion in a microgravity environment and proposing a human-like control method for robot astronauts moving in space stations. Specifically, the movement and contact force data of the human body during AD motion were collected on an air-floating platform. Through human AD modeling analysis, the mechanism of human motion is discovered, and semi-sinusoidal primitives of contact forces are proposed for AD motion. Then, a dynamic guidance model of human AD motion is built to complete motion planning under contact constraints, which is used as the expected model for the AD control of robot astronauts. Benefiting from the force primitives, accurate and safe planning of human-like AD motion can be completed. The characteristics and mechanism of human AD motion have been analyzed from the perspective of optimization. Lastly, based on the proposed dynamic guidance model, the AD motion policy is mapped to the robot astronaut system via a system control method based on the equivalent mapping of dynamic responses (force, velocity and pose). Through comparative analysis with real human motion data and simulation results under different conditions, the proposed AD control method can achieve human-like motion efficiently and stably. Even when confronted with errors in the robot's contact velocities and inertia parameters, the method can significantly reduce the motion errors while ensuring stability.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vuelo Espacial / Ingravidez / Robótica / Astronautas / Desaceleración / Aceleración Límite: Humans Idioma: En Revista: ISA Trans Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vuelo Espacial / Ingravidez / Robótica / Astronautas / Desaceleración / Aceleración Límite: Humans Idioma: En Revista: ISA Trans Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos