Your browser doesn't support javascript.
loading
Reviewing critical TRPM2 variants through a structure-function lens.
Tóth, Ádám V; Bartók, Ádám.
Afiliación
  • Tóth ÁV; Department of Biochemistry, Semmelweis University, 37-47 Tuzoltó street, Budapest 1094, Hungary; HCEMM-SE Molecular Channelopathies Research Group, 37-47 Tuzoltó street, Budapest 1094, Hungary; HUN-REN-SE Ion Channel Research Group, 37-47 Tuzoltó street, Budapest 1094, Hungary.
  • Bartók Á; Department of Biochemistry, Semmelweis University, 37-47 Tuzoltó street, Budapest 1094, Hungary; HCEMM-SE Molecular Channelopathies Research Group, 37-47 Tuzoltó street, Budapest 1094, Hungary; HUN-REN-SE Ion Channel Research Group, 37-47 Tuzoltó street, Budapest 1094, Hungary. Electronic address: bartok.adam@semmelweis.hu.
J Biotechnol ; 385: 49-57, 2024 Apr 10.
Article en En | MEDLINE | ID: mdl-38442841
ABSTRACT
The transient receptor potential melastatin 2 (TRPM2) channel plays a central role in connecting redox state with calcium signaling in living cells. This coupling makes TRPM2 essential for physiological functions such as pancreatic insulin secretion or cytokine production, but also allows it to contribute to pathological processes, including neuronal cell death or ischemia-reperfusion injury. Genetic deletion of the channel, albeit not lethal, alters physiological functions in mice. In humans, population genetic studies and whole-exome sequencing have identified several common and rare genetic variants associated with mental disorders and neurodegenerative diseases, including single nucleotide variants (SNVs) in exonic regions. In this review, we summarize available information on the four best-documented SNVs one common (rs1556314) and three rare genetic variants (rs139554968, rs35288229, and rs145947009), manifested in amino acid substitutions D543E, R707C, R755C, and P1018L respectively. We discuss existing evidence supporting or refuting the associations between SNVs and disease. Furthermore, we aim to interpret the molecular impacts of these amino acid substitutions based on recently published structures of human TRPM2. Finally, we formulate testable hypotheses and suggest means to investigate them. Studying the function of proteins with rare mutations might provide insight into disease etiology and delineate new drug targets.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades Neurodegenerativas / Canales Catiónicos TRPM Límite: Animals / Humans Idioma: En Revista: J Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedades Neurodegenerativas / Canales Catiónicos TRPM Límite: Animals / Humans Idioma: En Revista: J Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos