Your browser doesn't support javascript.
loading
Grafting of Poly(ionic liquid) Brushes through Fe0-Mediated Surface-Initiated Atom Transfer Radical Polymerization for Marine Antifouling.
Wu, Daheng; Wang, Jianing; Yin, Xiaodong; Tan, Runxiang; Zhang, Tao.
Afiliación
  • Wu D; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
  • Wang J; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
  • Yin X; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
  • Tan R; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang T; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Langmuir ; 40(16): 8393-8399, 2024 Apr 23.
Article en En | MEDLINE | ID: mdl-38442040
ABSTRACT
Surface-tethered poly(ionic liquid) brushes have attracted considerable attention in widespread fields, from bioengineering to marine antifouling. However, their applications have been constrained due to the poor polymerization efficiency and sophisticated operation process. In this work, we efficiently synthesized the poly(ionic liquid) brushes with unparalleled speed (up to 98 nm h-1) through Fe0-mediated surface-initiated atom transfer radical polymerization (Fe0 SI-ATRP) while consuming only microliter of monomer solution under ambient conditions. We also demonstrated that poly(ionic liquid) brushes with gradient thickness and wettability were easily accessible by regulating the distance between the opposite plates of Fe0 SI-ATRP. Moreover, the resultant poly(ionic liquid) brushes presented excellent antibacterial activities against Escherichia coli (99.2%) and Bacillus subtilis (88.1%) after 24 h and low attachment for proteins and marine algae (≤5%) for over 2 weeks. This research provided pathways to the facile and controllable fabrication of poly(ionic liquid) materials for marine antifouling applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos