Your browser doesn't support javascript.
loading
Cavity-modified molecular dipole switching dynamics.
Weidman, Jared D; Dadgar, Mohammadhossein Shahriyar; Stewart, Zachary J; Peyton, Benjamin G; Ulusoy, Inga S; Wilson, Angela K.
Afiliación
  • Weidman JD; Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
  • Dadgar MS; Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
  • Stewart ZJ; Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
  • Peyton BG; Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
  • Ulusoy IS; Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, USA.
  • Wilson AK; Scientific Software Center, Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
J Chem Phys ; 160(9)2024 Mar 07.
Article en En | MEDLINE | ID: mdl-38441264
ABSTRACT
Polaritonic states, which are formed by resonances between a molecular excitation and the photonic mode of a cavity, have a number of useful properties that offer new routes to control molecular photochemistry using electric fields. To provide a theoretical description of how polaritonic states affect the real-time electron dynamics in molecules, a new method is described where the effects of strong light-molecule coupling are implemented using real-time electronic structure theory. The coupling between the molecular electronic states and the cavity is described by the Pauli-Fierz Hamiltonian, and transitions between polaritonic states are induced via an external time-dependent electric field using time-dependent configuration interaction (TDCI) theory, producing quantum electrodynamics TDCI (QED-TDCI). This method is used to study laser-induced ultrafast charge transfer and dipole-switching dynamics of the LiCN molecule inside a cavity. The increase in cavity coupling strength is found to have a significant impact on the energies and transition dipole moments of the molecule-cavity system. The convergence of the polaritonic state energies as a function of the number of included electronic and photonic basis states is discussed.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos