Your browser doesn't support javascript.
loading
Right ventricular performance during acute hypoxic exercise.
Forbes, Lindsay M; Bull, Todd M; Lahm, Tim; Sisson, Tyler; O'Gean, Katie; Lawley, Justin S; Hunter, Kendall; Levine, Benjamin D; Lovering, Andrew; Roach, Robert C; Subudhi, Andrew W; Cornwell, William K.
Afiliación
  • Forbes LM; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
  • Bull TM; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
  • Lahm T; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
  • Sisson T; Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA.
  • O'Gean K; Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
  • Lawley JS; Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  • Hunter K; Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  • Levine BD; Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
  • Lovering A; Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
  • Roach RC; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  • Subudhi AW; Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
  • Cornwell WK; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.
J Physiol ; 2024 Feb 26.
Article en En | MEDLINE | ID: mdl-38409819
ABSTRACT
Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) = 0.21) and isobaric hypoxic ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 11 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ and again at 50% hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ( F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12). Median (interquartile range) values for non-invasive V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dtmax , and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . During submaximal exercise at 50% of hypoxic V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$  = 0.12 and the associated increase in PA pressures. KEY POINTS The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Physiol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Physiol Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido