Your browser doesn't support javascript.
loading
Telechelic sequence-defined oligoamides: their step-economical synthesis, depolymerization and use in polymer networks.
De Franceschi, Irene; Badi, Nezha; Du Prez, Filip E.
Afiliación
  • De Franceschi I; Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium nezha.badi@ugent.be filip.duprez@ugent.be.
  • Badi N; Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium nezha.badi@ugent.be filip.duprez@ugent.be.
  • Du Prez FE; Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium nezha.badi@ugent.be filip.duprez@ugent.be.
Chem Sci ; 15(8): 2805-2816, 2024 Feb 22.
Article en En | MEDLINE | ID: mdl-38404375
ABSTRACT
The application of sequence-defined macromolecules in material science remains largely unexplored due to their challenging, low yielding and time-consuming synthesis. This work first describes a step-economical method for synthesizing unnatural sequence-defined oligoamides through fluorenylmethyloxycarbonyl chemistry. The use of a monodisperse soluble support enables homogeneous reactions at elevated temperature (up to 65 °C), leading to rapid coupling times (<10 min) and improved synthesis protocols. Moreover, a one-pot procedure for the two involved iterative steps is demonstrated via an intermediate quenching step, eliminating the need for in-between purification. The protocol is optimized using γ-aminobutyric acid (GABA) as initial amino acid, and the unique ability of the resulting oligomers to depolymerize, with the formation of cyclic γ-butyrolactame, is evidenced. Furthermore, in order to demonstrate the versatility of the present protocol, a library of 17 unnatural amino acid monomers is synthesized, starting from the readily available GABA-derivative 4-amino-2-hydroxybutanoic acid, and then used to create multifunctional tetramers. Notably, the obtained tetramers show higher thermal stability than a similar thiolactone-based sequence-defined macromolecule, which enables its exploration within a material context. To that end, a bidirectional growth approach is proposed as a greener alternative that reduces the number of synthetic steps to obtain telechelic sequence-defined oligoamides. The latter are finally used as macromers for the preparation of polymer networks. We expect this strategy to pave the way for the further exploration of sequence-defined macromolecules in material science.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido