Your browser doesn't support javascript.
loading
Pulsed Laser Manufactured Heteroatom Doped Carbon Dots via Heterocyclic Aromatic Hydrocarbons for Improved Tribology Performance.
Jin, Guangkai; Xue, Shenghua; Zhang, Rui; Liu, Sha; Wang, Shiyuan; Liu, Shujuan; Ye, Qian; Wang, Hongqiang; Zhou, Feng; Liu, Weimin.
Afiliación
  • Jin G; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Xue S; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Zhang R; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Liu S; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Wang S; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Liu S; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Ye Q; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Wang H; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Zhou F; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
  • Liu W; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
Small ; 20(29): e2311876, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38403845
ABSTRACT
Traditional laser-assisted method (top-down synthesis strategy) is applied in the preparation of carbon dots (CDs) by cutting larger carbon materials, which requires harsh conditions, and the size distribution of the CDs is seldom monodisperse. In this work, heteroatom-doped CDs, represented by N,S co-doped CDs (N,S-CDs), can be prepared successfully by pulsed laser irradiation of heterocyclic aromatic hydrocarbons-based small molecule compound solution. The friction coefficient (COF) of base oil PAO decreases from 0.650 to 0.093, and the wear volume reduces by 92.0% accompanied by 1 wt.% N,S-CDs addition, while the load-bearing capacity is improved from 100 to 950 N. The excellent lubrication performance is mainly attributed to the formation of a robust tribofilm via a tribochemical reaction between N,S-CDs and friction pairs, and the N,S-CDs can play a mending effect and polishing effect for worn surfaces. Furthermore, the lubricant containing heteroatom doped CDs are capable of being prepared in situ via pulsed laser irradiation of heterocyclic aromatic hydrocarbons in base oil, which can avoid the redispersed problem of nano-additive in base oil to maintain long-term dispersion, with COF of 0.103 and low wear volume ≈1.99 × 105 µm3 (76.9% reduction) even after standing for 9 months.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania