Your browser doesn't support javascript.
loading
Modulating Th1/Th2 drift in asthma-related immune inflammation by enhancing bone mesenchymal stem cell homing through targeted inhibition of the Notch1/Jagged1 signaling pathway.
Kun, Wang; Xiaomei, Cao; Lei, Yang; Huizhi, Zhu.
Afiliación
  • Kun W; Huixue Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medical Science, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038,
  • Xiaomei C; College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
  • Lei Y; Intensive Care Department, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
  • Huizhi Z; The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China. Electronic address: huizhiZahtcm@163.com.
Int Immunopharmacol ; 130: 111713, 2024 Mar 30.
Article en En | MEDLINE | ID: mdl-38387192
ABSTRACT
Asthma, a disease intricately linked to immune inflammation, is significantly influenced by the immune regulatory effect of bone mesenchymal stem cells (BMSCs). This study aims to investigate changes in the homing of BMSCs in bronchial asthma, focusing on the Notch homolog (Notch)1/Jagged1 signaling pathway's role in regulating T helper 1(Th1)/T helper 2(Th2) drift. Additionally, we further explore the effects and mechanisms of homologous BMSCs implantation in asthma-related immune inflammation. Following intervention with BMSCs, a significant improvement in the pathology of rats with asthma was observed. Simultaneously, a reduction in the expression of inflammatory cells and inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin(IL)-4, and IL-13 was observed in bronchoalveolar lavage fluid (BALF). Furthermore, there was an increase in the expression of Th1 cytokine Interferon-γ(IFN-γ)and the transcription factor T-box expressed in T cell (T-bet), while the expression of Th2 cytokine IL-13 and transcription factor GATA binding protein (GATA)-3 decreased in lung tissue. This indicates that the Th1/Th2 drift leans towards Th1, which a crucial in ameliorating asthma inflammation. Importantly, inhibition of the Notch1 signaling pathway led to an increased expression of the Stromal cell-derived factor-1(SDF-1)/C-X-C motif chemokine receptor (CXCR)4 chemokine axis. Consequently, the homing ability of bone marrow mesenchymal stem cells to asthma-affected lung tissue was significantly enhanced. BMSCs demonstrated heightened efficacy in regulating the cytokine/chemokine network and Th1/Th2 balance, thereby restoring a stable state during the immune response process in asthma. In conclusion, inhibiting the Notch signaling pathway enhances the expression of the SDF-1 and CXCR4 chemokine axis, facilitating the migration of allogeneic BMSCs to injured lung tissues. This, in turn, promotes immune regulation and improves the Th1/Th2 imbalance, thereby enhancing the therapeutic effect on asthmatic airway inflammation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Asma / Células Madre Mesenquimatosas Límite: Animals Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Asma / Células Madre Mesenquimatosas Límite: Animals Idioma: En Revista: Int Immunopharmacol Asunto de la revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos