Electron deficient Bi3+δ serves as N2 absorption sites and inhibits carriers recombination to enhance N2 photo-fixation in BiOBr/TiO2 S-scheme heterojunction.
J Colloid Interface Sci
; 663: 61-72, 2024 Jun.
Article
en En
| MEDLINE
| ID: mdl-38387187
ABSTRACT
Efficient carriers separation and multiple nitrogen (N2) activation sites are essential for N2 photo-fixation. Here, we found that the BiOBr/TiO2 (BBTO) displayed an attractive reversible photochromism (white â grey) due to the generation of electron deficient Bi3+δ, which was produced by the hole trapping of Bi3+ under light irradiation. Interestingly, more Bi3+δ were detected in the BBTO heterojunction than in pure BiOBr, attributing that the hole trapping was promoted by the built-in electric field in the Step scheme (S-scheme) heterojunction. In the BBTO, the electron deficient Bi3+δ enhanced carriers separation and served as the reactive active site to adsorb more N2. Consequently, the BBTO possessed an excellent N2 photo-fixation activity (191 µmol gcat-1 h-1), which was 7.7 and 18 times higher than that of pure BiOBr (24.8 µmol gcat-1 h-1) and TiO2 (10.6 µmol gcat-1 h-1), respectively. Therefore, this work provides a new perspective for enhancing N2 photo-fixation by the electron deficient photocatalysts with S-scheme heterojunction.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos