Your browser doesn't support javascript.
loading
Inverse regulation of SOS1 and HKT1 protein localization and stability by SOS3/CBL4 in Arabidopsis thaliana.
Gámez-Arjona, Francisco; Park, Hee Jin; García, Elena; Aman, Rashid; Villalta, Irene; Raddatz, Natalia; Carranco, Raul; Ali, Akhtar; Ali, Zahir; Zareen, Shah; De Luca, Anna; Leidi, Eduardo O; Daniel-Mozo, Miguel; Xu, Zheng-Yi; Albert, Armando; Kim, Woe-Yeon; Pardo, Jose M; Sánchez-Rodriguez, Clara; Yun, Dae-Jin; Quintero, Francisco J.
Afiliación
  • Gámez-Arjona F; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain.
  • Park HJ; Department of Biology, ETH Zurich, Zurich 8092, Switzerland.
  • García E; Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea.
  • Aman R; Department of Biological Sciences, Chonnam National University, Gwangju 61186, Korea.
  • Villalta I; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain.
  • Raddatz N; Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
  • Carranco R; Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Tours 37200, France.
  • Ali A; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain.
  • Ali Z; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain.
  • Zareen S; Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea.
  • De Luca A; Laboratory for Genome Engineering and Synthetic Biology, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
  • Leidi EO; Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea.
  • Daniel-Mozo M; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain.
  • Xu ZY; Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Cientificas, Seville 41012, Spain.
  • Albert A; Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain.
  • Kim WY; Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun 130024, China.
  • Pardo JM; Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain.
  • Sánchez-Rodriguez C; Division of Applied Life Science (BK21 Program), Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea.
  • Yun DJ; Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and University of Seville, Seville 41092, Spain.
  • Quintero FJ; Department of Biology, ETH Zurich, Zurich 8092, Switzerland.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Article en En | MEDLINE | ID: mdl-38386704
ABSTRACT
To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos