Chiral and flat-band magnetic quasiparticles in ferromagnetic and metallic kagome layers.
Nat Commun
; 15(1): 1592, 2024 Feb 21.
Article
en En
| MEDLINE
| ID: mdl-38383472
ABSTRACT
Magnetic kagome metals are a promising platform to develop unique quantum transport and optical phenomena caused by the interplay between topological electronic bands, strong correlations, and magnetic order. This interplay may result in exotic quasiparticles that describe the coupled electronic and spin excitations on the frustrated kagome lattice. Here, we observe novel elementary magnetic excitations within the ferromagnetic Mn kagome layers in TbMn6Sn6 using inelastic neutron scattering. We observe sharp, collective acoustic magnons and identify flat-band magnons that are localized to a hexagonal plaquette due to the special geometry of the kagome layer. Surprisingly, we observe another type of elementary magnetic excitation; a chiral magnetic quasiparticle that is also localized on a hexagonal plaquette. The short lifetime of localized flat-band and chiral quasiparticles suggest that they are hybrid excitations that decay into electronic states.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido