Your browser doesn't support javascript.
loading
Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution.
Article en En | MEDLINE | ID: mdl-38381644
ABSTRACT
Super-resolving the magnetic resonance (MR) image of a target contrast under the guidance of the corresponding auxiliary contrast, which provides additional anatomical information, is a new and effective solution for fast MR imaging. However, current multi-contrast super-resolution (SR) methods tend to concatenate different contrasts directly, ignoring their relationships in different clues, e.g., in the high-and low-intensity regions. In this study, we propose a separable attention network (comprising high-intensity priority (HP) attention and low-intensity separation (LS) attention), named SANet. Our SANet could explore the areas of high-and low-intensity regions in the "forward" and "reverse" directions with the help of the auxiliary contrast while learning clearer anatomical structure and edge information for the SR of a target-contrast MR image. SANet provides three appealing benefits First, it is the first model to explore a separable attention mechanism that uses the auxiliary contrast to predict the high-and low-intensity regions, diverting more attention to refining any uncertain details between these regions and correcting the fine areas in the reconstructed results. Second, a multistage integration module is proposed to learn the response of multi-contrast fusion at multiple stages, get the dependency between the fused representations, and boost their representation ability. Third, extensive experiments with various state-of-the-art multi-contrast SR methods on fastMRI and clinical in vivo datasets demonstrate the superiority of our model. The code is released at https//github.com/chunmeifeng/SANet.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos