Your browser doesn't support javascript.
loading
Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network.
Liu, Liwei; Wei, Yixin; Tan, Zhebin; Zhang, Qi; Sun, Jianqiang; Zhao, Qi.
Afiliación
  • Liu L; College of Science, Dalian Jiaotong University, Dalian, 116028, China.
  • Wei Y; Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, 571158, China.
  • Tan Z; College of Science, Dalian Jiaotong University, Dalian, 116028, China.
  • Zhang Q; College of Software, Dalian Jiaotong University, Dalian, 116028, China.
  • Sun J; College of Science, Dalian Jiaotong University, Dalian, 116028, China.
  • Zhao Q; School of Information Science and Engineering, Linyi University, Linyi, 276000, China. sjqyjs@sina.com.
Interdiscip Sci ; 16(3): 635-648, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38381315
ABSTRACT
Circular RNAs (circRNAs) are non-coding RNAs generated by reverse splicing. They are involved in biological process and human diseases by interacting with specific RNA-binding proteins (RBPs). Due to traditional biological experiments being costly, computational methods have been proposed to predict the circRNA-RBP interaction. However, these methods have problems of single feature extraction. Therefore, we propose a novel model called circ-FHN, which utilizes only circRNA sequences to predict circRNA-RBP interactions. The circ-FHN approach involves feature coding and a hybrid deep learning model. Feature coding takes into account the physicochemical properties of circRNA sequences and employs four coding methods to extract sequence features. The hybrid deep structure comprises a convolutional neural network (CNN) and a bidirectional gated recurrent unit (BiGRU). The CNN learns high-level abstract features, while the BiGRU captures long-term dependencies in the sequence. To assess the effectiveness of circ-FHN, we compared it to other computational methods on 16 datasets and conducted ablation experiments. Additionally, we conducted motif analysis. The results demonstrate that circ-FHN exhibits exceptional performance and surpasses other methods. circ-FHN is freely available at https//github.com/zhaoqi106/circ-FHN .
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al ARN / Redes Neurales de la Computación / ARN Circular Límite: Humans Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al ARN / Redes Neurales de la Computación / ARN Circular Límite: Humans Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania