Your browser doesn't support javascript.
loading
Screening of heavy metal-resistant rhizobial and non-rhizobial microflora isolated from Trifolium sp. growing in mining areas.
Rahal, Sarah; Menaa, Belkis; Chekireb, Djamel.
Afiliación
  • Rahal S; Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria. rhl_sara@yahoo.fr.
  • Menaa B; Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria.
  • Chekireb D; Laboratory of Applied Biochemistry and Microbiology (LABM), Faculty of Sciences, Department of Biochemistry, University Badji Mokhtar Annaba, B.P. 12, Sidi Amar, 23200, Annaba, Algeria.
Environ Monit Assess ; 196(3): 283, 2024 Feb 19.
Article en En | MEDLINE | ID: mdl-38372826
ABSTRACT
Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and development with several beneficial effects, especially in challenging environmental conditions, such as the presence of toxic contaminants. In this study, 49 isolates obtained from Trifolium sp. nodules growing on a Pb/Zn mine site were characterized for PGP traits including siderophores production, phosphate solubilization, extracellular enzymes production, and antifungal activity. The isolates were also screened for their ability to grow at increasing concentrations of NaCl and heavy metals, including lead, zinc, cobalt, copper, nickel, cadmium, and chromium. The findings of our study indicated that isolates Cupriavidus paucula RSCup01-RSCup08, Providencia rettgeri RSPro01, Pseudomonas putida RSPs01, Pseudomonas thivervalensis RSPs03-RSPs09, and Acinetobacter beijerinckii RSAci01 showed several key traits crucial for promoting plant growth, thus demonstrating the greatest potential. Most isolates displayed resistance to salt and heavy metals. Notably, Staphylococcus xylosus RSSta01, Pseudomonas sp. RSPs02, Micrococcus yunnanensis RSMicc01, and Kocuria dechangensis RSKoc01 demonstrated a significant capacity to grow at salt concentrations ranging from 10 to 20%, and isolates including Cupravidus paucula RSCup01-RSCup08 exhibited resistance to high levels of heavy metals, up to 1300 mg/L Pb++, 1200 mg/L Zn++, 1000 mg/L Ni++, 1000 mg/L Cd++, 500 mg/L Cu++, 400 mg/L Co++, and 50 mg/L CrVI+. Additionally, the analysis revealed that metal-resistant genes pbrA, czcD, and nccA were exclusively detected in the Cupriavidus paucula RSCup01 strain. The results of this study provide insights into the potential of plant growth-promoting rhizobacteria strains that might be used as inoculants to improve phytoremediation in heavy metal-contaminated soils.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Metales Pesados / Trifolium Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: Argelia Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Metales Pesados / Trifolium Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: Argelia Pais de publicación: Países Bajos