Your browser doesn't support javascript.
loading
scEM: A New Ensemble Framework for Predicting Cell Type Composition Based on scRNA-Seq Data.
Cai, Xianxian; Zhang, Wei; Zheng, Xiaoying; Xu, Yaxin; Li, Yuanyuan.
Afiliación
  • Cai X; School of Sciences, East China Jiaotong University, Nanchang, 330013, China.
  • Zhang W; School of Sciences, East China Jiaotong University, Nanchang, 330013, China. wzhang_math@whu.edu.cn.
  • Zheng X; Operations research and planning department, Naval University of Engineering, Wuhan, 430033, China.
  • Xu Y; School of Sciences, East China Jiaotong University, Nanchang, 330013, China.
  • Li Y; School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan, China.
Interdiscip Sci ; 16(2): 304-317, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38368575
ABSTRACT
With the advent of single-cell RNA sequencing (scRNA-seq) technology, many scRNA-seq data have become available, providing an unprecedented opportunity to explore cellular composition and heterogeneity. Recently, many computational algorithms for predicting cell type composition have been developed, and these methods are typically evaluated on different datasets and performance metrics using diverse techniques. Consequently, the lack of comprehensive and standardized comparative analysis makes it difficult to gain a clear understanding of the strengths and weaknesses of these methods. To address this gap, we reviewed 20 cutting-edge unsupervised cell type identification methods and evaluated these methods comprehensively using 24 real scRNA-seq datasets of varying scales. In addition, we proposed a new ensemble cell-type identification method, named scEM, which learns the consensus similarity matrix by applying the entropy weight method to the four representative methods are selected. The Louvain algorithm is adopted to obtain the final classification of individual cells based on the consensus matrix. Extensive evaluation and comparison with 11 other similarity-based methods under real scRNA-seq datasets demonstrate that the newly developed ensemble algorithm scEM is effective in predicting cellular type composition.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Análisis de la Célula Individual Límite: Humans Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Análisis de la Célula Individual Límite: Humans Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Alemania