Your browser doesn't support javascript.
loading
Excess sludge-based biochar loaded with manganese enhances catalytic ozonation efficiency for landfill leachate treatment.
Gao, Bo; Zhang, Jingyao; Liu, Jiadong; Ayati, Ali; Sillanpää, Mika.
Afiliación
  • Gao B; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address: gaobo
  • Zhang J; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
  • Liu J; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
  • Ayati A; EnergyLab, ITMO University, 9 Lomonosova Street, Saint Petersburg, 191002, Russia.
  • Sillanpää M; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait; School of Technology, Woxsen University, Hyderabad, Telangana, India.
Environ Pollut ; 346: 123591, 2024 Apr 01.
Article en En | MEDLINE | ID: mdl-38367696
ABSTRACT
This study developed an efficient and stable landfill leachate treatment process, which was based on the combination of biochar catalytic ozonation and activated sludge technology for intensive treatment of landfill leachate, aiming to achieve the standard discharge of leachate. The focus is to investigate the effect of manganese loading on the physicochemical properties of biochar and the mechanism of its catalytic ozonation. It was found that more surface functional groups (CO, Mn-O, etc.) and defects (ID/IG = 1.27) were exposed via the change of original carbon structure by loading Mn, which is conducive to the generation of lattice oxygen. Meanwhile, generating different valence states of Mn metal can improve the redox properties and electron migration rate, and encourage the production of reactive oxygen species (ROS) during the reaction process and enhance the catalytic efficiency. The synergistic action of microorganisms, especially denitrifying bacteria, was found to play a key role in the degradation of nitrogenous pollutants during the activated sludge process. The concentration of NH+4-N was reduced from the initial 1087.03 ± 9.56 mg/L to 9.05 ± 1.91 mg/L, while COD was reduced from 2290 ± 14.14 mg/L to 86.5 ± 2.12 mg/L, with corresponding removal rates of 99.17% and 99.20%, respectively. This method offers high efficiency and stability, achieving discharge standards for leachate (GB16889-2008). The synergy between Mn-loaded biochar and microorganisms in the activated sludge is key to effective treatment. This study offers a new approach to solving the challenge of waste leachate treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Contaminantes Químicos del Agua / Carbón Orgánico Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Contaminantes Químicos del Agua / Carbón Orgánico Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido